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ABSTRACT 
A least-squares finite element analysis of viscous fluid flow together with a trajectory integration technique 
for tracers is formulated and provides a mechanism for investigating mixing. Tracer integration is carried 
out using an improved Heun predictor-corrector. Results from our supporting numerical studies on the 
CRAY and Connection Machine (CM) closely resemble the patterns of mixing observed in experiments. 
A 'box-counting' scheme and other measures to characterize the level of mixing are developed and 
investigated. This measure is utilized in numerical experiments to determine an optimal forcing frequency 
for mixing by periodic boundary motion in a rectangular enclosure. Some details concerning the numerical 
schemes and vector-parallel implementation are also included. 
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INTRODUCTION 

Mixing is important in many industrial processes and in naturally occurring phenomena. There 
have been several experimental studies designed to afford a better understanding of the nature 
of mixing in fluids in the absence of diffusion. Of particular note in the context of the present 
work are experiments for laminar 'two-dimensional' mixing of tracers in viscous fluids under 
periodic boundary condition19. Complex patterns evolve from an initial 'blob' or 'blobs' of 
tracer as a result of 'stretching' and 'folding' with repeated periodic cycles. Moreover, 
different spatial domains in the flow field may exhibit very different mixing characteristics. For 
example, some regions will have convoluted striations with many long thin folds, whereas in 
other regions the initial 'blob' of dye tracer will be scarcely deformed indicating little mixing. 
'Islands' in the fluid may exist that exterior tracer does not penetrate and from which tracer can 
not depart. Such issues may be particularly relevant in certain applications such as reaction or 
combustion processes. 

Clearly, the extent of mixing is of considerable practical interest. Moreover, the configuration 
and size of 'islands' and of mixing patterns depend upon the forcing conditions such as the 
frequency of boundary motion and on material properties such as viscosity. A mechanism for 
quantifying mixing is highly desirable and can be applied in a control-feedback cycle to determine 
optimal mixing conditions (e.g. the best periodic boundary frequency for a given fluid). Simulation 
provides an opportunity to obtain precise quantitative data on mixing and has been a subject 
of several recent studies1,11. 

In the present work we develop a finite element formulation for laminar viscous flow in two 
dimensions and apply this to study mixing. The finite element formulation is non-standard and 
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is actually based on a least-squares mixed approach. However, this is incidental to the thrust 
of the present work and therefore the finite element scheme will be only briefly described here. 
Further details of the least-squares treatment are given elsewhere6,8. The flow field computed 
from the finite element analysis is used in a trajectory integration scheme for convective transport 
of sets of particles that simulate tracers. This trajectory scheme is implemented on a CRAY 
shared memory multiprocessor and on the CM2 distributed parallel processor. 

Images of the tracer pattern provide the best indication of the nature and level of mixing. 
However, a simple scalar measure to quantify mixing or at least discriminate cases is highly 
desirable. Several scalar concepts related to area coverage, perimeter, tortuosity, spreading, and 
statistical measures are considered. Related fractal ideas and 'box-counting' are investigated and 
utilized in a set of numerical studies. In particular, we demonstrate how such measures of mixing 
might be used to improve the mixing characteristics of a system in which the periodic forcing 
frequency can be varied. 

The outline of the paper is as follows: first, we briefly summarize the statement of the tracer 
mixing problem for a given velocity field. Next we introduce the least-squares mixed finite 
element scheme used in the flow field computations. The Heun predictor-corrector scheme 
for particle tracing is then presented. The problem of defining a simple measure of continuum 
mixing is subsequently described and this is followed by a treatment of related particle mixing 
computations. Numerical experiments give mixing patterns and compare several of the previous 
measures for test cases corresponding to steady flow and periodic flow. Finally, we give vector 
and parallel performance statistics for the simulations. 

MIXING CONCEPTS 

Mixing may be broadly categorized as of three types: 
(i) stretching and folding: an initial designated material region stretches and folds by action 

of flow without diffusion and breakup; 
(ii) diffusion: the stretching and folding in category (i) is accompanied by diffusion; 
(iii) breakup: The initial region stretches, folds and breaks due to interfacial tension forces, 

producing smaller fragments which might in turn stretch and break. 
In the present work we focus on the problem of convective mixing with negligible diffusion in 
category (i). 

The actual tracer 'blob' can be modelled as either a continuum or as a discrete system of 
'particles' and we discuss the relative merits of these respective approaches later. In the continuum 
model the transport of a species of concentration c(x,t) is simulated using either the convective 
equation or a convection-diffusion equation in the case where the diffusion is not negligible. 
Since diffusion is small in the present work we can compute an approximation to the 
convection-dominated problem by a Taylor-Galerkin, SUPG or similar scheme. In fact a 
least-squares scheme can again be used23. The second approach is to model the tracer as a large 
set of representative 'particles' and this is the approach followed here. The mixing pattern can 
then be visualized and simple mixing measures can be investigated or tested. Moreover, this 
strategy lends itself to distributed parallel computing and image processing. 

Let u(x,t) be the velocity vector flow field for a fluid in motion. At some time t = t0 (the initial 
time from the viewpoint of the mixing problem) we select a material 'blob' or 'blobs' in the fluid 
to correspond to a dye tracer. Thereafter, fluid mixing of this tracer in the absence of diffusion 
can be characterized by the stretching and repeated folding of the material in the 'blobs' (the 
tracer) under the action of the fluid velocity. That is, the position x(t) of any point in the tracer 
blob satisfies (by definition) the pathline equation 

(1) 
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where at t = t0, x(t0) is given. Since u(x,t) is presumed known, it follows that the pathline of the 
tracer particle with initial position x(t0) can be traced out for t > t0 by integrating (1). 

In the 'particle' representation, the tracer 'blob' is approximated as a discrete set of particles 
where each particle corresponds to 'lumping' the tracer at the centre of a representative area. 
Clearly, to develop a reasonable representation of the mixing pattern, we need to take a sufficiently 
large sample of 'particles' distributed through the initial blob. (If there is extensive local stretching 
and folding, the relative motion of nearby particles is significant.) Problem (1) then reduces to 
integrating trajectories for the decoupled dynamical system, 

(2) 

with initial vector {xp(0)} = Xo specified. In the numerical studies considered later, a modified 
Heun method is used to integrate trajectories in parallel on the Connection Machine. 

The finite dimensional dynamical system (2) is deterministic for laminar flow and stochastic 
for turbulent flow. In the laminar case of interest here, (2) is autonomous for steady flow and 
non-autonomous for unsteady flow. Chaotic particle motion and mixing may be encountered 
in both the stochastic turbulent flow and in the unsteady laminar flow case. Although the driving 
velocity field in (2) can correspond to any fluid type, we shall, for convenience, consider the case 
of mixing in incompressible viscous fluid flow. This case is of considerable practical interest and 
there is also an abundance of experimental data in the literature. 

LEAST-SQUARES FLOW SOLUTION 

Incompressible laminar flow of a Newtonian fluid may be described by the Navier-Stokes 
equations, 

(3) 

for transport of momentum and mass conservation, respectively, where u is velocity, p is pressure, 
ρ is density, v is kinematic viscosity and g is a prescribed body force. Initial conditions u(x,0)=u0(x) 
with and boundary conditions are specified (e.g. no slip u = uS on ∂Ω where us is the 
boundary velocity, is appropriate in the mixing studies later). These complete the mathematical 
statement of the viscous flow problem. 

Except in a few simple cases, the velocity « satisfying the Navier-Stokes equations (3) is not 
known analytically. Numerical solution of the viscous flow problem provides instead an 
approximate velocity field uh(x,t) so that problem (2) may be modified by replacing u by uh. 
Provided uh is sufficiently close to u, the resulting tracer pathlines will approximate the actual 
tracer motion well. 

As noted in the Introduction, an approximate solution of (3) can be obtained in a variety of 
ways. In a different context, we have been investigating the use of least-squares finite elements 
and have, for convenience, applied this approach here. For completeness, we briefly give the 
formulation since it is non-standard and an interesting topic in its own right. A more detailed 
treatment that also considers some limitations of the least-squares formulation is in preparation9. 

First, the vorticity ζ is introduced to recast the governing equations as a first-order system 
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for two-dimensional flow in domain Ω as 

(4) 

with appropriate boundary conditions specified on ∂Ω. In the subsequent numerical studies, we 
consider the case with u, v specified on ∂Ω and reference pressure p0 specified at an arbitrary point. 

Next, semi-discretizing by finite differencing with respect to time at t0=θtn + 1+(l — θ)tn, for 
time increment ∆tn = tn+1 — tn and 0≤0 ≤ 1 

(5) 

The residual vector for admissible functions ζ u, v, and p in (5) then may be conveniently 
expressed in terms of zT = (ζ,u,v,p) as, 

(6) 
where fn corresponds to all expressions in (5) evaluated at previous time level tn as well as the 
contribution of the forcing vector g. 

Introducing the successive approximation technique to iteratively linearize the residual 
expression in (6), at iteration s+ 1 for approximation zn+1 we have, 

(7) 
The least-squares residual formulation corresponds to finding the admissible solution zn+1, s + 1 

minimizing the least-squares quadratic functional, 

(8) 

In the present work a discretization Ωh and finite element expansions ζh, uh, vh, ph are introduced 
to construct an approximate least-squares finite element formulation23. An interesting feature 
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of the least-squares mixed method is that it is not subject to the LBB condition encountered in the 
mixed Galerkin method3,8,10,14,21. However, there are other open issues concerning the 
least-squares method that warrant study9. 

When the finite element expansion are substituted in (8), the stationary condition leads to a 
sparse symmetric linear algebraic system for the iterate vector Zn+1,s+1 of nodal solution values, 

System (9) is solved using sparse Gaussian elimination for iterate s+1. Nonlinear iteration ceases 
when specified convergence tolerances on successive iterates and on the residual (7) are met. The 
velocity field approximation uh(x,tn+l) can then be interpolated from the nodal velocity solution 
using the finite element basis. This velocity field provides the forcing function in the dynamical 
system (2) for tracing trajectories. 

PARTICLE TRACING ALGORITHM 

Mixing patterns for a collection of 'particles' lumped as discrete points can be constructed by 
integrating the dynamical system (2) and tracing the particle trajectories. Since we are interested 
in mixing over significant time periods, it is important that the time integration scheme be 
accurate, so that accumulated integration error does not excessively degrade the accuracy. 
Furthermore, many particle trajectories must be computed and the integration scheme should 
be efficient and easily vectorized or parallelized. 

The improved Heun predictor-corrector scheme27 is an 0(Ar)2 two-step integrator that has 
the desired attributes. The basic scheme for particle p at timestep n is: 
Predictor: 

(10) 

Corrector: 

(11) 

In the predictor step (10) the velocities and are known (interpolated using 
the finite element basis) from the nodal solution at tn-1 and tn, so the predictor calculation 
reduces to SAXPY vector operations. Using the velocity vector u at the predicted particle 
locations can be interpolated similarly from the nodal velocity vector at tn+1 on the associated 
elements which are easily located. Then the corrector step (11) is applied and, similarly, involves 
SAXPY operations. Hence, the Heun method provides an efficient accurate scheme for trajectory 
integration on appropriate vector architectures. The tracing scheme is also readily parallelized 
since the motion of any tracer particle is independent of the motion of other particles. These 
issues are considered in more detail later. 

CONTINUUM MIXING MEASURES 

Before proceeding with numerical experiments and imaging the mixing patterns based on this 
trajectory scheme, we first consider the problem of quantifying mixing for the continuum and 
discrete cases. This is an open question and, as we show, it is doubtful that any simple measure 
can be derived. Nevertheless, some important features of the mixing problem are revealed. 

The problem of reliably quantifying the level of mixing in either an actual experiment or in 
a numerical simulation is not straightforward. Moreover there are several subtle distinctions 
between these two respective situations which we discuss later. Let us first briefly consider the 
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experimental case19. Here a dye blob is introduced into the fluid at some location and the dye 
pattern is examined at later times. Dye is convected by the fluid and, to a small extent, also 
diffuses. The patterns shown in the experiments indicate the extent to which the dye is transported, 
but not the concentration (except in a qualitative sense based on the gradation in colour). 

Thus it is important, a priori, to define what we mean by mixing. In the strictest possible sense 
we should intepret a 'completely mixed' case as one where the dye concentration is uniform 
throughout the domain. For example, in the absence of convection an initial dye blob would 
be diffused and diluted to a uniform constant steady state. The concentration as a function of 
position at any time would be determined as a solution of the diffusion equation. Similarly, if 
convection is involved, the solution to the convection-diffusion equation gives the evolving 
species concentration. The difference between the uniform steady state diffusion result and the 
solution to the convection-diffusion equation at any time represents the 'departure from a 
completely mixed configuration'. Hence, the more closely the constant uniformly-mixed steady 
behaviour is modelled, the better the mixing. Attempts to quantify mixing rigorously using a 
simple measure such as area coverage fail and counter-examples may be devised as seen later. 
Yet, qualitatively, these scalar measures may be useful and give insight into the mixing process 
or aid in design analysis. Accordingly, we now briefly consider some of the most natural choices 
and comment on their limitations. There are also some subtle distinctions between the physical 
situation and the mathematical model that are best considered via measure theory and which 
we comment upon later. 

The simplest approach to measure the extent of two-dimensional mixing on a section or 
surface would be to attempt to calculate the area fraction of the dye pattern at times of interest 
during mixing19. This is relatively easy if the dye remains in a contiguous blob since the problem 
reduces to calculating the section area of the blob (assuming, of course, that the dye blob is 
essentially two-dimensional in nature). For example, a triangulation of the dye shape can be 
easily constructed from a set of points on the boundary contour of the blob5 and the dye area 
is approximately the sum of element areas. Alternatively, a probabilistic (Monte Carlo) approach 
can be used with the area determined by the number of 'hits' on the blob relative to the number 
of 'misses' obtained using a random number generator with range corresponding to the fluid 
domain Ω. 

If mixing is primarily due to diffusion, then this area measure is reasonable although still 
incomplete. In the numerical model, the diffusive transport for concentration c(x,t) would need 
to be included and the fractional dye area with c greater than a small positive tolerance level 
would give the area coverage. (Obviously the area fraction also offers no information on the 
local concentration which may be of critical interest in applications.) The problem of determining 
the area becomes more complicated when mixing occurs by convection and the dye pattern is 
'folded' back and forth with many thin lines. Even computing the area accurately is then difficult. 
This case also serves to pinpoint a fundamental weakness in using area to quantify mixing. Let 
us assume that the thin folds are regularly distributed over Ω with alternate thin strands separated 
by thin open strips. This distribution is conceptually consistent with the idea of a 'reasonably' 
well-mixed system. However, area alone can not describe mixing since we can not differentiate 
any other shape pattern (e.g., a square in one corner) that has the same area as this coverage 
by thin strands. Only if the pattern area approaches the domain area as in the diffusive mixing 
case, would this be viable. 

The presence of folds suggests that the perimeter of the dye pattern or its tortuosity might 
also provide alternative descriptions of mixing. However, even in the diffusive case the perimeter 
may not grow monotonically as the dye spreads. The tortuosity in porous media applications 
is often characterized as the ratio of area to perimeter and can be similarly introduced here for 
the convective folded mixing mechanism. As folds degenerate to thin curves and merge, overlap, 
or cross, the difficulty of computing a tortuosity measure becomes prohibitive. Tortuosity also 
fails to describe the spread of dye as seen in later examples. 

A complete detailed description (and image) of the concentration as a function of position and 
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time will characterize the transport solution but does not immediately offer a simple means for 
comparative measures of mixing. We can, however, use statistical procedures to compare a given 
concentration state with a uniform distribution by computing means, standard deviations and 
tests of fit. This will permit a more complete description of the state of mixing but will not 
discriminate pattern structures. For example, two patterns of very different structure would still 
give rise to the same primitive statistics. Furthermore, in many situations it is the structure, 
shape and extent of the pattern that is of interest: For instance, whether the initial dye blob is 
folded into many thin striations over most of the domain, over part of the domain, or remains 
a relatively undisturbed 'island' may be significant. This evidently is a more particular 
interpretation of 'mixing'. 

Since mixing involves the extent of the pattern and its relative density these two concepts 
(pattern extent and pattern density) could be utilized to develop a statistically-based measure. 
For example, the maximum, minimum and mean diameters of the pattern relative to the domain 
together with standard deviation would provide a practical characterization and this could be 
utilized together with the area to produce a more complete description. The problem of assigning 
relative weighting to these features to determine which of several patterns is relatively 
more mixed must still be addressed. 

There are other issues that can complicate the situation. These concern concepts that we 
might consider to be local (micro-mixing) versus global (macro-mixing). To examine this further, 
let us now develop some related mathematical concepts. Consider, for example, a circular curve. 
This can be deformed into any other simple closed curve and all such curves are topologically 
equivalent or homeomorphic. That is, any two such curves can be transformed into one another 
by a simple continuous deformation. We remark that length need not be preserved in so far as 
this mathematical (continuum) argument is concerned. However, if the original curve is deformed 
to intersect itself, then the transformation is no longer continuous and the curves are no longer 
topologically equivalent. Since one aspect of mixing involves complex crossing of the tracer 
material, the topological characterization would provide part of a more complete description 
for mixing that other simpler approaches (e.g., length measures, etc.) alone can not. In this 
example, the number of curve intersections and their distribution would provide some 
characterization of the topological complexity of the pattern and this might be an important 
feature of the mixing from a practical standpoint. Similarly, ideas from 'knot theory' could be 
applied15'17. 

Let us briefly return to the area and length measures and consider a simple closed curve of 
length L. The shape of maximum area enclosed by the curve is a circle, and the ratio A/L of 
area A — πr2 to perimeter L=2nr is L/4π. If the circle is deformed to other simple curves then 
the area is decreased so the ratio L/4π is an upper bound for the set of simple closed curves of 
length L. For example, the square of side L/4 has A/L=L/l6<L/4π. The square has the 
maximum area of rectangles with given perimeter L and A/L = wh/2(w+h) where w=width, and 
h = height. As w or h→0 with L fixed we have A/L=wh/L→0. That is, 0<A/L<L/4π for all 
simple closed curves of fixed length L. 

Hence, if we have a simple closed tracer 'blob' with perimeter L, the maximum area would 
correspond to the circular shape (A/L=L/4π) and the more elongated shapes to smaller areas 
with A/L→0. We see that there is a tautology here when area and tortuosity measures are 
compared. The shape that has the greatest area would physically have the lowest local 
concentrations and in this sense has the greatest mixing. On the other hand the elongated 
(possibly folded) shapes characteristic of our tracer patterns imply greater mixing as indicated 
by greater tortuosity. 

Next, assume that the simple closed curve is arbitrarily perturbed to an irregular curve. The 
problem of determining the length of the new curve leads us to consider ideas related to the 
theory of fractals. In particular, the fractal dimension of the irregular boundary is greater than 
the fractal dimension of a line. Therefore, fractal dimension offers a measure of local irregularity 
and hence some information regarding 'micro-mixing'. However it fails to provide information 
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on scale. The desire to estimate fractal dimension has also led to simple constructive approaches 
by 'box-counting methods' which fit naturally with the discrete particle tracing approach adopted 
here. Later, we develop a 'box-counting' algorithm motivated by this idea. This is also a 
consequence of the observation that we are really dealing with discrete particle tracing in the 
present treatment rather than the continuum mixing problem and this issue is taken up next. 

PARTICLE MIXING MEASURES 

We emphasize that the previous mathematical descriptions, and to some extent the discussion 
of experimental mixing, have relied on a continuum description. However, in reality the fluid 
and tracer physically consist of discrete molecules and therefore are an extremely large finite 
set. Similarly, computations are not on the real number system but assume finite precision 
arithmetic on a countable number set (which is, in fact, a set of measure zero). Hence it is 
appropriate to model mixing numerically using a finite particle set. However, practical 
considerations indicate that only a moderately large number of particles can be traced even on 
the massively parallel computer systems considered here. 

The tracer patterns that arise in mixing may be quite complex as illustrated in the examples 
involving steady and periodic flows considered later. Moreover, it is important to quantify the 
level of tracer mixing from an initial configuration under different conditions such as periodic 
forcing frequencies and for different fluids. Since the mixing patterns may be convoluted with 
thin striations, many folds, isolated 'islands' and other complex structures the ideas associated 
with fractals may help quantify the level of mixing. In particular, the fractal dimension indicates 
how well an object (here the mixing pattern) covers the associated metric space and therefore 
can be used to construct a comparative measure for mixing that may be used to supplement 
other measures such as those mentioned previously. 

Particle occupation estimate 
Intuitively, we realize that the tracer blob is well-mixed if the tracer particles become uniformly 

distributed throughout the domain. Conversely, mixing will be low if the tracer particles are less 
uniformly distributed. This primitive concept leads to a simple contructive approach for 
determining fractal dimension by a 'box counting method'. The idea is similar to the probabilistic 
(Monte Carlo) technique mentioned earlier for determining areas or volumes based on object 
'hits' by a random number generator. The basic idea is to cover the flow domain with a uniform 
mesh and to count the proportion of boxes containing the evolved tracer particles (the attractor). 
For simplicity let us consider the case of a unit square or cube domain. More formally we have4: 

Let S be a compact non-empty set in with Euclidean metric. Cover 
B by a uniform mesh of boxes with side 2 - n . Let Nn(S) be the number of boxes which intersect 
S. Then the fractal dimension Df may be defined as, 

(12) 

It follows that, Df = 0 for a point, Df= 1 for a line segment, Df = 2 for a surface, and Df=3 for 
a solid. 

Now (12) alone can not describe mixing. This is clear since the fractal dimension of any surface 
'blob' is 2 independent of the size of S. For example if Ω is a unit square and S is the 
region l/2<x<3/4, l/2<y<3/4, the fractal dimension of S is 2. Similarly, the fractal dimension 
of S for l/4<x<3/4 and l/4<y<3/4 is also 2 even though the area is 4 times larger. 

However, the definition of fractal dimension in (12) motivates the development of box-counting 
and similar discrete techniques as an additional measurement to help characterize the mixing 
of a large but finite set of tracer particles. Let S* denote the corresponding particle pattern with 
P particles in domain B = [0,l]m, m =1,2,3. Next, construct a box partition for specified n 
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such that P≥(2n)m hold. The number of boxes containing one or more particles is then Nn(S*) 
and can be easily computed. Following (12), we may define, 

(13) 

as a mixing estimate for S*. It follows for a 2-D mixing problem (m = 2). 
To illustrate the dependence on n, let us consider P = 16 particles defining a pattern of particles 

S* in B = [0,1]2. Then for n= 1 there are four boxes, and If all 16 particles 
are in one box then N1{S*)=l so If the particles are in all four boxes then An 
intermediate value of would indicate an intermediate measure of mixing. For example, if the 
particles are in two boxes we get If the 16 particles are uniformly distributed then u = 2 
would provide a uniform mesh of boxes with exactly one particle per box. For n>2, 16 particles 
would not be sufficient to characterize a uniform distribution. More generally, we require P≥2mn. 
Setting P=2mn or equivalently n=log2(P)/m will help discriminate patterns. 

This estimate (13) for is similar to an area measure for the continuum case where the area 
is computed approximately by accumulating box areas, and therefore has similar shortcomings. 
For example, gives the same value irrespective of the precise distribution of particles among 
the box covering—most of the particles may be in one box and a single particle in each of the 
remaining boxes, etc. The mean, median, standard deviation and related statistical data on 
particle position can also be easily computed. 

We have emphasized that the fractal dimension can not be used directly to measure particle 
mixing by box-counting. However, in chaotic mixing the tracer pattern can be interpreted as a 
strange attractor and the box-counting estimate is an indication of the degree of chaotic 
mixing. Moreover, we anticipate that, in the event the mixing pattern is a fractal object, then 
box-counting should yield the fractal dimension. Let us briefy consider two well-known 
elementary patterns generated by simple iteration function systems—the uniform pattern on a 
square grid and the Sierpinski gasket for the triangular pattern4. As a mixing map, let a set of 
P particles in the initial square be mapped to P/4 particles in each of the four quadrants by the 
first iteration on the square and so on to P/22n particles per box after n iterations and n≤0.5 
log2 P. Then the number of boxes with particles is Nn(S*) = 22n, and (13) yields, 

which agrees with the expected fractal dimension for the square attractor. Similarly, for the 
Sierpinski map, P particles in the initial triangle are mapped to P/3 in each vertex subtriangle 
with none in a centre subtriangle and so on. At iteration n, there are P/3" particles in each 
'active' subtriangle so that Nn(S*) = 3n and, 

so we obtain the fractal dimension for the Sierpinski pattern. 

Particle concentration estimates 
As noted previously, a single measure can not provide a true characterization of the mixing 

pattern or process. However, several such parameters that complement one another may provide 
a useful description. We have also indicated that statistical information can also be incorporated 
in the parameterization. This approach can be utilized to estimate the particle concentration 
which is not addressed by the previous ideas. 

Let with m = 2. Let P = 2mn be the number of particles in a given mixing 
simulation with integer n, and consider a uniform partition of the domain to G = P/221 boxes 
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for integer 0 ≤ 1 ≤ n . Number the boxes g= 1,2,...,G and let the local particle concentration ci for 
box i be the fraction of particles in the box; i.e. ci—Pi/P. Now a uniformly mixed particle pattern 
would correspond to a state with Pi = P/G = 2m1 particles in each box and the concentration 
would be categorized accordingly as uniform with value c i=l/G. The other extreme case 
corresponds to all particles in a single box j so that ci,=0 except for box j where Cj= 1. We may 
elect to plot the local values ci as a piecewise-constant concentration surface (histogram) over 
the domain. Alternatively, we may fit the values in some related fashion and then construct 
particle concentration iso-contours. 

The departure of a given particle mixing state from the uniform state can also be used to 
characterize the level of mixing. For example, the standard deviation σc of box particle 
concentration ci with respect to the uniform distribution of particle can be computed as, 

(14) 

Then σc=0 for the uniform state; σc increases as the configuration departs from uniformity; 
and σc= 1/√G for the most nonuniform state. Let the scaled deviation be defined by Dc=√Gσc 
so that DcЄ[0,l], which gives a normalized statistic related to the distribution of local particle 
concentration. 

Particle separation estimate 
The 'spread' of the particles can also be characterized statistically in several ways, e.g. let gij 

be the distance separating particles i and j in the state. The matrix D = (dij), i,j=l,2,...,P, then 
can be introduced to describe the relative separation of particles in the system. Clearly, d i i=0 
and the entries dij increase as particles move further apart. The groupings of small and large 
entries in matrix D gives an indication of particle spread and clustering. E.g. if all entries are 
small, then there is one tight cluster of particles. If matrix D has 2 sets of small entries and 2 
sets of large entries, there are two tight particle clusters that are widely separated, and so on. 

Various norms of this matrix can also be introduced to help quantify the particle spread. For 
example, we can compute the Euclidean length ||y|| of vector y=Dx where x ranges over the 
unit radial vector from an origin, 

or, equivalently, 

(15) 

and then characterize particle separation using ||D||. 

Dynamical system interpretation 
Variance in the particle trajectories can be used as a mechanism for further characterizing 

the tracer pattern behaviour and investigating the dynamical system for the tracer2,13,25. The 
approach is based on similar ideas to those for studying the dynamics of patterns in flow between 
concentric cylinders26. 

Let (xp(ti)yp(ti)) be the position of particle p at time ti. Then the displacement of particle p 
during timestep ∆t = ti—ti - 1 is given by, 
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The total distance traversed by particle p at time ti is, 
dp(ti) = dp(ti_1) + ∆dp(ti) 

with dp(to) = 0. The mean distance traversed by all particles at time ti follows as, 

and the variance in tracer particle distance traversed relative to the mean is given by, 

(16) 

For a chaotic Hamiltonian system, 

and μ(Є[0,3]) measures the diffusivity of the dynamic system24. Then μ provides a relevant 
property of the dynamical system. 

NUMERICAL RESULTS AND ANALYSIS 

Several physical experiments for dye tracing in glycerine for a cavity of width W and height H 
under both steady and periodic forcing motion of the walls have been reported11 and are 
considered in the following numerical studies. The corresponding dimensionless variables are 
x'=x/L, u' = u/V,p'=p/pV2, with L = H2/ W the characteristic length scale and V a characteristic 
(wall) velocity. The dimensionless time is taken to be t' = Vt/L for nonperiodic flow and t' = t/T 
for periodic flow with period T. Omitting the prime notation and introducing Reynolds number 
Re= VL/v, and Strouhal number Sr=fL/V with periodic flow at frequency f= 1/T, we get, 

The initial particle distribution is specified by {xp(0)} = X0. The Strouhal number Sr in (17) can 
be viewed as a dimensionless forcing frequency for the periodic cavity flow. For the following 
numerical studies, the kinematic viscosity v = 6cm2/sec, Reynolds number Re~0(1), and Sr «1. 
In the mixing studies we display the computed patterns and where available compare with 
experiment. We also compute the particle occupation estimate from (13), and the variance 

in the particle trajectory from (16). 

Mixing patterns in steady flow 
The mixing pattern is first simulated in a steady flow. For the steady flow, we take Sr= 1 in 

(17) and first integrate the flow problem to a steady-state. Then this steady state flow field defines 
the forcing function for the particle trajectory equation. Mixing is induced by motion of the 
vertical side walls of a cavity with width W=10 cm and height H = 6cm. The side walls move 
in opposite directions with velocities of magnitude 10/6 cm/sec (Re=l). The steady problem 
offers a good validation case for the flow solver and trajectory computation since the streamlines 
are fixed, and the tracer cannot cross a streamline. This problem also provides an accuracy 
check on the integration method for the class of problems of interest. 
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The flow field was integrated to steady state on a uniform 10x6 finite element mesh with 
9-node biquadratic elements for all four field variables in the least-squares formulation described 
previously. A fixed time step ∆t=0.6 sec. was employed for 0≤ t ≤ 12 sec. In the solution procedure, 
the velocities at a representative node vary with time and reach the steady state in about 3 sec. 
as indicated in Figure I. The streamline, pressure and vorticity are shown in Figure 2 for the 
solution at t = 12sec., and are essentially steady state results. The streamfield plot reveals a 
hyperbolic point in the centre and two elliptic points symmetrically located on the horizontal 
centre line. This defines the steady state solution u(x) in the trajectory calculation following. 

Since the flow is steady in this case, we simply store the steady velocity field for the trajectory 
integration scheme with u(x,t)=u(x) for use in (10), (11). A uniform band of (400x25) tracer 
particles is placed along a diagonal line extending from bottom left to top right as indicated in 
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Figure 3(a). This defines the initial state and the system is integrated with fixed (conservatively 
small) timestep ∆t = 0.06 sec. Following the evolution of the tracer from this initial state, we find 
that the narrow strip is first stretched and then folded by t = 18sec. in Figure 3(b). The main 
structure of the mixing pattern is evident at t = 60 sec. with some tracer confined to the elliptic 
interior zones and other tracer in the region exterior to the 'figure-eight' dividing streamline, 
see Figure 3(c). Further stretching and folding occurs as the process continues, see Figure 3(d), 
but the two 'islands' surrounding the elliptic points are essentially fixed in size from t = 60sec. 
onwards. The spread of tracer is limited to the region defined by the streamlines containing the 
initial band. The simulated mixing pattern is similar to that obtained from laboratory 
experiment18 as indicated in Figure 3(e). 

The calculation was repeated using larger time steps of ∆t = 0.3 sec. and 3.3 sec. and the same 
pattern structure is maintained for significant time (3000 sec.) until accumulated integration error 
effects are evident. Hence, a time step of order 0(1 sec.) is adequate to maintain accuracy in 
the range of times of interest in our study. 

Mixing patterns in periodic flow 
The mixing pattern is next simulated for a periodic flow in a 10 cm x 6 cm cavity. Mixing is 

induced by the alternate motions in opposite directions of the respective top and bottom walls 
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with velocity of magnitude V= 2 cm/sec (Re= 1.2) and period T, i.e. we have for top and bottom 
velocities, respectively: 

The viscous flow solution is computed on a 10 x 6 mesh of 9-node finite elements with timestep 
∆t=0.1 sec. The velocity history computed at representative interior points (x = 9 cm, y = 1 cm 
and x = 9 cm, y =2 cm) during two periods is shown in Figure 4 for a period of boundary motion 
T = 4 sec. The small 'overshoot' at the point (9 cm, 1 cm) corresponds to the flow adjustment as 
one boundary velocity is reduced from V to zero and the other increased from zero to V. Point 
(9 cm, 2 cm) is further from the forcing boundary and no noticeable overshoot occurs. 

The streamline, vorticity and pressure solutions at t=3/2T and 2T are sketched in Figure 5. 
Comparing streamline patterns, there is a single elliptic point with position oscilating from the 
top to bottom location once during each period. This behaviour is similar to that of the two 
'blinking' vortices described in Reference 1. We anticipate that the periodic forcing and adjustment 
of streamline patterns will enhance tracer mixing. 
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Experimental studies19 have considered the mixing pattern with forcing period 48 sec. The 
corresponding mixing patterns after 10 periods are displayed in Figure 6(e) for a circular dye 
blob of diameter 0.3 cm initialy injected at position (2 cm, 3 cm). These results provide a basis 
for comparison with the present computational model. In our numerical simulation, a square 
tracer of size 0.3 x 0.3 cm2 and containing 100 x 100 particles is initially centred at (2 cm, 3 cm) 
at the beginning of a periodic cycle as indicated in Figure 6(a). The stretched and folded tracer 
after 5, 7, and 10 periods is shown in Figures 6(b), (c), (d). The computed mixing pattern after 
10 periods in Figure 6(d) is quite extensive and resembles closely the experimental result in 
Figure 6(e) for essentially the same situation. There are some minor differences since, for instance, 
our initial tracer is square and the experimental initial tracer is approximately circular. 

In the above mixing pattern for periodic flow, an island without tracer is observed in the middle 
region. Laboratory experiments have also shown that a tracer located in this island mixes very 
little, while tracer outside the island is extensively mixed. There is no communication between 
them18,19. The experimental studies were duplicated in a set of simulations to explore this 
behaviour for an initial configuration consisting of three square 'blobs' of size 0.4 x 0.4 cm2 and 
containing 60 x 60, 50 x 50 and 80 x 80 particles for the tracers centred at (1.6 cm, 3.2 cm), (3 cm, 
3 cm) and (8.4 cm, 1.8 cm) respectively, see Figure 7(a). The period was 35 sec. and the computed 
mixing pattern is shown in Figures 7(b), (c) and (d) after 3, 7 and 8 periods, respectively. The 
tracer on the left is initially located near the border of an island subregion, and part of the 
boundary of the island can be seen from that tracer in the final plot. The middle tracer inside 
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the island is much less mixed than the right tracer outside the island. The pattern in Figure 7(d) 
compares favourably with the experimental results in Figure 7(e) and (f). 

Mixing efficiency 
The mixing patterns in steady and periodic flows show different degrees of mixing. If the 

patterns in Figures 3 and 6 are compared with respect to time using the degree of mixing by the 
particle occupation estimate two kinds of variations are observed in Figure 8. Both mixing 
patterns are simulated by tracing 10000 particles, and their degrees of mixing are measured 
using 2mn boxes (m = 2, n = 6). is initially lower in periodic flow than in steady flow since a 
small square of initial tracer is compared with a long band initial tracer. However, for periodic 
flow increases faster than that in steady flow because exhibits an exponential growth in 
periodic flow. The low efficiency of mixing in steady flow results from the inability of the tracer 
to cross the streamlines. There are large regions that the tracer will not invade even if the initial 
tracer is distributed across the entire domain. Mixing is totally different for periodic flow, and 
the tracer extends over the domain. Therefore, periodic flow should be introduced to enhance 
mixing. 

When periodic flow is considered further, we find that the degree of mixing depends upon the 
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forcing frequency and the initial position of the tracer. Our numerical scheme can be utilized 
to determine the optimal forcing frequency to achieve maximal mixing. To illustrate this, mixing 
was computed for forcing frequencies Sr=0.0036, 0.0090, 0.018, 0.0225, 0.0360, 0.0450, 0.0600 
and 0.090, which correspond to periods T=500, 200, 100, 80, 60, 40, 30 and 20 sec. The initial 
tracer is centred at (8 cm, 3 cm). The mixing patterns are shown at t = 250 sec. in Figure 9 
for each frequency. Relatively less mixing has been achieved at the extreme frequencies and the 
best mixing is observed at a period of 80 sec, where we see that almost uniform mixing has taken 
place by t = 250 sec. The lower level of mixing in the extreme lower fequency range is because 
the tracer is stretched very slowly by an almost steady flow. The lower mixing in the extreme 
upper frequency range occurs because the tracer is hardly stretched by 'shaking' flow. Therefore, 
the optimal mixing would be expected under an optimal frequency near Sr = 0.225, which 
corresponds to the period of 80 sec. in Figure 9(d). 

The mixing patterns in Figure 9 show different size and shape islands. The island size decreases 
gradually as Sr→0.0036~ 0.0255, and then increases as Sr→0.0255~ 0.090. The second part of 
this correlation between the size of open regions and forcing frequency has also been noted in 
experiments. For example, when experiments were made at periods 20, 40, 60 and 600 sec. 
(Sr=0.09, 0.045, 0.036 and 0.003) and the best mixing is observed at period 60 sec.11. When 
comparing with our numerical simulation at periods 20, 30, 40, 60, 80, 100, 200, 500 sec., where 
mixing with period 80 sec. is better than that with period 60 sec. 
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Another set of calculations with tracer located initially at centre of cavity (5 cm, 3 cm) in 
Figure 10 with the same periods shows similar behaviour to that of Figure 9 except at certain 
intermediate frequencies (e.g. at periods 40, 100 sec.) where the mixing is very poor. At periods 
40 and 100 sec., the mixing patterns reveal that the tracers are in the islands, see Figure 10(c) 
and (f). When the tracer is outside the island, the mixing for the centre tracer is only slightly 
worse than that for the right tracer(8 cm, 5 cm), see Figure 9 and 10(a), (b), (d), (e), (g) and (h). 

Next, the degree of mixing is measured at t = 250 sec. using the same box-counting as before 
(22 x 6 boxes), and is graphed against frequency in Figure 11 for tracers initially at (8 cm, 
3 cm) indicated by the solid line at (5 cm, 3 cm) by the dashed line. Over the frequency range 
shown, the degree of mixing is found to depend on the forcing frequency and initial tracer 
location. When the tracer is initially located on the right, attains its maximum of 1.9402 at 
period 80 sec. and has minima of 1.1775 and 1.6777 at periods 500 sec. and 20 sec., respectively. 
When the tracer is initially located at the centre, the profile has local maxima near periods 
30, 80 and 200 sec., with a global maximum of 1.8797 again occurring near period 80 sec. and 
local minima occurring near periods 40 and 100 sec. The curves represent the degree of 
mixing reasonably for the mixing patterns in Figures 9 and 10. That is, for the centre tracer, the 
tracer is in an island near these local minimal frequencies. When the initial tracers are outside 
the island, the initial right tracer results in a slightly better mixing than the initial centre tracer. 
Hence, the forcing frequency is a key factor and initial position is the secondary factor in 
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obtaining an efficient mixing as long as the initial tracer is carefully placed outside the island. 
Our numerical results provide a more detailed identification of this behaviour than previous 
experimental work. 

We also measure the variance of the particle position for several frequencies. Let a set of 
50 x 30 tracer particles be distributed uniformly in the cavity at time t = 0. In Figure 12, the 
variances are plotted on a log-log scale against time for periodic forcing with periods T=20, 
35,48,80,500 sec. For asymptotically increasing t, we have linear behaviour in the log-log plot. 

VECTOR AND PARALLEL ASPECTS 

In the present work we have focused on 2D mixing but the treatment of 3D mixing follows 
directly and is obviously more computationally intensive. Particle tracing is a straightforward 
procedure and can be carried out conveniently as a post-processing operation on a graphics 
workstation. There are situations, however, where rapid tracing is desirable during the 
computation rather than as a post-process. The desire for real-time simulation and real time 
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tracing is a further incentive. Finally, current generation computer hardware may offer vector 
and parallel capabilities that can be exploited to achieve these goals and yield very efficient 
tracing schemes22. In this section we briefly examine some aspects of both the vector and parallel 
appoaches. 

Let us first consider vector implementation. The Heun predictor-corrector scheme in (10)—(11) 
has the general form, 

xnew=xoId + αua + βub (18) 
where xold is the known position vector, α and β are given scalars and ua, ub are particle velocity 
vectors interpolated from the nodal solutions. Hence calculation of the new tracer position vector 
xnew, consists of two main steps: interpolation of velocities and then the evaluation of (18). The 
calculation (18) is seen to involve multiplication of vectors by scalars (αcua and βub) followed by 
vector addition and can be accomplished efficiently by two SAXPY operations, e.g. On the 
CRAY X-MP/14se employed for the present work a SAXPY runs at 166 Mflops12. 

In the present tracing studies we have considered a Cartesian grid. Consequently, it is 
straightforward and efficient to determine which element contains a given particle. The situation 
for unstructured grids is more complicated and necessitates both an expanded data structure 
including neighbour information and a trajectory test for side crossings5. Having determined 
the element containing a particle at (xp,yp), the particle velocity can be interpolated from the 
nodal velocity. Recall that the interpolation process is local with, 

(19) 

where are the element basis functions and P is the total number of particles. Therefore 
this calculation also vectorizes over the particles. 

Vectorization 
We now provide megaflop (Mflop) rates on the CRAY-XMP for the update in (18) and the 

velocity interpolation in (19). The calculations correspond to tracing two initial 0.4 cm square 
blobs, each with 70 x 70 particles distributed uniformly and centred respectively at (1.8 cm, 3.5 cm) 
and (8.2 cm, 3.5 cm) in a 10 x 10 biquadratic element mesh. The rate of 96 Mflops for the position 
update in (18) is reasonable but the poor performance of 33 Mflops reveals a difficulty for the 
velocity interpolation in (19). More detailed examination of this part of the calculation indicates 
that the source of the performance degradation is a memory bank conflict in extracting for 
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(19). Since particles are numbered in the natural ordering sequence mainly contiguously-numbered 
particles initially lie in the same elements. Since each particle references memory for there 
are multiple close sequenced references to the same memory address. This results in a severe 
memory bank conflict. As mixing progresses and the tracer is dispersed over many elements, 
the bank conflicts subside and performance improves. 

The initial poor performance can be improved by numbering the particles in a non-consecutive 
fashion so that common memory requests are staged further apart. Let the particles be renumbered 
in the sequence 1, P, 2, P— 1, ..., P/2, P/2+l so that the velocities are now picked alternately 
from the two elements. This renumbering reduces the bank conflict by 23.6% and the rate of 
interpolating velocities increases to 40.34 Mflops. If all 9800 particles are distributed element-
by-element on a mesh with E element so that each element has approximately P/E particles and 
the particles in element e are numbered e, e+ p, e + 2P, etc. Then the bank conflict is reduced 
by 99.8%, and the rate for velocity interpolation increases to 78.9 Mflops. Hence we see that 
appropriately ordering the initial particles can substantially reduce bank conflicts and improve 
the performance. 

Parallelization and visualization 
Tracer motion and visualization can also be carried out effectively on parallel computers. In 

the present work we examine tracer mixing on the CM2 a parallel SIMD system. The CM2 
also permits parallel I/O to a framebuffer which is a high-speed graphics display system for 
visualization. In the parallel algorithm, the position vector for the particles is distributed by 
components over the processors so that (18) is implemented component-wise in parallel. That 
is, the particles are distributed over the processors. Similarly, the velocity field is. distributed 
by a TABLE-SET over the nodes in parallel. The velocities are retrieved from memory by an 
indirect addressing hardware system TABLE-LOOK. The patterns of particles at the desired 
times are displayed on the attached CM2 framebuffer. The algorithm was implemented primarily 
in CM FORTRAN with TABLE-SET and TABLE-LOOK in Paris (assembler) to obtain 
efficiency in indirect addressing. Without the indirect address hardware, the kernel for 
interpolation of particle velocities (19) is as low as 5 Mflops on the CM2-8K for a set of 8192 tracer 
particles in a steady flow field. The indirect address hardware permits the kernel (19) to run at 
111 Mflops. 

The VP ratio is defined as the number of virtual processing elements emulated by each physical 
processing element. For our tracing problem on the CM2-16K, the VP ratio is P/214. The 
calculation rates are shown in Figure 13 for both steady flow and for periodic flow. The higher 
the VP ratio, the higher the rate, but the increase in rate slows down with further increase of 
the VP ratio. The top rate is 295 Mflops for steady flow and 224 Mflops for periodic flow when 
P = 218. In the above test problems, the transition steps, where TABLE-SET is needed, comprise 
80% of all marching steps. In most cases for periodic flow, the percentage of transition steps is 
significantly less than this percentage, e.g. from 0.8% to 20% for flow with period 500 sec. to 
20 sec respectively. Hence the actual rate will be between the steady flow and periodic flow cases 
in the above test problem. When compared with the peak rate of 800 Mflops on the CM2-16K 
for a SAXPY operation16, our rates in the application code are about 28% (224 Mflops) to 37% 
(295 Mflops) of the peak rate. 

In the visualization stage, the initial pattern of particles is input from a data vault and displayed 
on the frame buffer. Subsequent patterns are traced on the CM2 according to (18), (19) and then 
displayed at specified time intervals on the framebuffer with a 325 x 195 pixel map. The pattern 
can also be written to a data file for videotape. Timing and related data for sample calculations 
are given in Table 1. Case 1 is the mixing pattern study for steady flow (see Figure 3), case 2 is 
the mixing pattern study for periodic flow (see Figure 6). 

The performance for visualization is summarized in Table 1 as follows: One frame of the 
picture is displayed after a few time steps of integration (see 'Others-March/frame') so that the 
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Table I Timing for visualizing mixing processes on CM2-16K 

Time 
(sec.) 

Others 

CM2 
(time/frame) 
SUN 
(time/frame) 
Tape 
(time/frame) 
Experiment 
Particles 
Time steps 
Frames 
Marches/frame 
Data (Kbytes) 

Case 1 

360 
(0.72) 

2074 
(5.76) 

16 
(0.032) 

120 
2 1 4 

2000 
501 

4 
16040 

Case 2 

756 
(0.36) 

3780 
(4.99) 

31 
(0.032) 

480 

2 1 4 

4800 
961 

5 
30776 

time for displaying 1 frame is about 1 sec. (see 'Time-CM2-(time/frarne)'). The sequential time 
to write a data file for a videotape (see 'Time-SUN') is about 5 sec. per frame (see Time-SUN-
(time/frame)'). The continuous stretching and folding of the tracer is represented on a 
corresponding videotape with about 0.05 sec. per frame (see 'Time-Tape-(time/frame)'). Finally 
the actual time taken for the corresponding laboratory experiments is given as 'Time-Experiment'. 
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CONCLUDING REMARKS 

A least-squares finite element solution for viscous incompressible flow is employed in conjunction 
with a particle tracing algorithm to determine tracer patterns for mixing studies. The Heun 
particle tracing scheme is implemented on the CRAY-XMP shared-memory and the CM2 
distributed memory system and mixing patterns are compared with experiment. Several measures 
of mixing are introduced and discussed for both the continuum and discrete cases. The question 
of 'tuning' the forcing frequency to enhance mixing in an experiment is examined. The attributes 
and limitations of these measures are examined and counter-examples constructed. We emphasize 
that there is no simple quantitative measure (such area) and that a more complete characterization 
can be made using several measures. Of course, one measure may be adequate for a specific 
purpose. Results of these numerical studies are very similar to published experimental work, but 
do differ in some minor respects. For instance, in the steady flow problem the simulation results 
show that unoccupied regions interior to closed streamlines are not invaded which is consistent 
with the mathematical model and assumptions. In the experiments these regions are slowly 
invaded, probably due to diffusion of dye and some small unsteady effects in the experiment. 
Furthermore, the numerical experiments permit a more complete investigation of forcing 
frequencies and hence are better able to approximate the optimal mixing frequency. 
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